If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-26x-50=0
a = 3; b = -26; c = -50;
Δ = b2-4ac
Δ = -262-4·3·(-50)
Δ = 1276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1276}=\sqrt{4*319}=\sqrt{4}*\sqrt{319}=2\sqrt{319}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{319}}{2*3}=\frac{26-2\sqrt{319}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{319}}{2*3}=\frac{26+2\sqrt{319}}{6} $
| 4/x+x=225 | | 0.81+e=-6.3 | | A=(x√−2)2 | | x-13/4=21/2 | | 8x/9-3x/2=5/6-x | | x+(x-50)+(x-50)-40=180 | | 3x⁴-8x³-6x²+24x=0 | | 2.5p=5,p= | | 4y=-2.8,y= | | 5(p-2)-2(p+1)=3 | | 9b-12=9b+21 | | 34-x=45 | | 2p+10=11 | | x/3–12=17 | | 5x•2=45 | | 10x+8=-52 | | Q=f(P) | | 2y2-3y-4=0 | | X²+9x=-6 | | n-2/5=8 | | (4x-8)²=81 | | 1=5z-24 | | 2-3=7x10 | | 70h=10 | | 2y-7=-17,y= | | 3x+4=-4.4,x= | | 10=h70 | | x+7+5=943 | | 64-y=-3,y= | | 6*x+8=74 | | 4x2-18x-10=0 | | X²+11x=-5 |